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__________________________________________________________________________________________ 

Abstract  
The human high-level visual cortex comprises regions specialized for the processing of 
distinct types of stimuli, such as objects, animals, and human actions. How does this 
specialization emerge? Here, we investigated the role of sensorimotor experience in shaping 
the organization of the action observation network as a window on this question. Observed 
body movements are frequently coupled with corresponding motor codes, e.g. during 
monitoring one’s own movements and imitation, resulting in bidirectionally connected 
circuits between areas involved in body movements observation (e.g., of the hand) and the 
motor codes involved in their execution. If the organization of the action observation network 
is shaped by this sensorimotor coupling, then, it should not form for body movements that do 
not belong to individuals’ motor repertoire. To test this prediction, we used fMRI to 
investigate the spatial arrangement and functional properties of the hand and foot action 
observation circuits in individuals born without upper limbs. Multivoxel pattern decoding, 
pattern similarity, and univariate analyses revealed an intact hand action observation network 
in the individuals born without upper limbs. This suggests that the organization of the action 
observation network does not require effector-specific visuomotor coupling. 

__________________________________________________________________________________________ 

Introduction 
The high-level visual cortices contain a reproducible and consistent spatial arrangement of 
areas specialized for the processing of distinct types of stimuli such as manipulable objects 
(Lewis 2006), animals (Konkle and Caramazza 2013), faces (Kanwisher et al. 1997), other 
body parts (Downing et al. 2001), and human actions (Beauchamp et al. 2002; Caspers et al. 
2010). The origin of this organization remains unclear, however.      

Research on this issue in recent years affords two conclusions. First, this large-scale 
organization does not require visual experience: congenitally blind individuals show the 
stereotypical large-scale organization of domain preference (Mahon et al. 2009; He et al. 
2013; Ricciardi et al. 2013; Peelen et al. 2014; Striem-Amit and Amedi 2014; van den Hurk 
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et al. 2017). Second, there is mounting evidence that this organization draws on the large-
scale connectivity pattern of these different areas to various motor-, affective- or cognitive-
related downstream computational systems and, thus, reflect how the information processed 
by the different preference areas is to be used by the rest of the brain in the service of 
behavior  (Mahon and Caramazza 2011; Saygin et al. 2011; Bracci et al. 2012; Simmons and 
Martin 2012; Kravitz et al. 2013; Hutchison et al. 2014; Hannagan et al. 2015; Heimler et al. 
2015; Bi et al. 2016; Saygin et al. 2016; Konkle and Caramazza 2017; Stevens et al. 2017).  

What remains unknown, however, is whether this organization emerges from repeated 
functional coupling between the area of specialization within the high-level visual cortex and 
their downstream computational systems (Johnson 2011; Hannagan et al. 2015), possibly	
through Hebbian learning mechanisms (Hebb 1949). Alternatively, its emergence may be 
guided by a genetically determined self-organizing process independent from any type of 
experience (Mahon and Caramazza 2011; Hannagan et al. 2015; Saygin et al. 2016). To date, 
only a few studies have provided data relevant to this question, and their results diverge. In 
favor of a critical role for experience, it has been shown that the emergence of the brain’s 
typical area of specialization for letters requires reading experience (Baker et al. 2007; 
Dehaene et al. 2010; Saygin et al. 2016). By contrast, the neural representation of tools and 
hands appears to be virtually the same in congenitally blind individuals (Peelen et al. 2013; 
Kitada et al. 2014; Striem-Amit and Amedi 2014), individuals born without hands (Striem-
Amit et al. 2017), and in the typically developed population (Bracci et al. 2012). Here, we 
investigated the role of sensorimotor experience in shaping the organization of the action 
observation network as a window on this question. 

A bilateral network of three main brain regions commonly referred to as the “action 
observation network” (AON) - the lateral occipitotemporal cortex (LOTC), the inferior 
parietal lobule (IPL) and the ventral premotor cortex (PMv) - has been consistently reported 
to preferentially respond to observed human actions than other animals’ or objects’ shape and 
movements (Grezes et al. 2001; Grossman and Blake 2002). This network forms a 
bidirectionally connected functional circuit translating observed actions into the 
corresponding motor codes, and vice versa. Viewing an action executed with a specific set of 
muscles, for instance, activates a representation of the corresponding muscles in the 
observer’s brain (Maeda et al. 2002; Fadiga et al. 2005). In the opposite direction, the 
execution of unseen hand and arm movements has been shown to engage the LOTC and the 
IPL (Astafiev et al. 2004). Thus, this network’s specialization for human actions could 
emerge through repeated functional coupling between the three regions of the AON (Wilson 
and Knoblich 2005; Heyes 2010; Casile et al. 2011) in the service of essential functions such 
as imitation (Buccino et al. 2004), observational learning (Mattar and Gribble 2005), and the 
visual control of one’s own body movements (Oztop and Arbib 2002; Wolpert et al. 2003). 
To test this possibility, we explored how people born without hands (individuals with 
dysplasia; IDs) represent hand and foot actions. We tested if hand action observation can be 
decoded in the IDs in the same locations as in controls.  If the typical large-scale organization 
and functional properties of the network for action representation emerges through repeated 
effector-specific functional coupling between the three regions of the AON, then, hand action 
representation should not be found in the AON in the IDs. If, however, the large-scale 
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functional organization of the AON does not require effector-specific visuomotor coupling, 
then, the IDs should represent hand actions in the AON. 

 

Materials and Methods 
Participants 

Five individuals (two males) born with severely shortened or completely absent upper limbs 
(participants with bilateral upper limb dysplasia, IDs, see Figure 1) of ototoxic (in-utero 
thalidomide exposure, ID2), genetic (ID5) or unknown origin and nine typically developed 
control participants (TDs) matched for age (no group difference; p < 0.29) participated in the 
experiment.  No participant had a history of psychiatric or neurological disorder.  All the IDs 
had developed fine motor skills of the feet and used their feet for many typical hand-related 
actions of daily life (e.g., opening or closing doors; for more information about IDs’ foot use 
see Vannuscorps et al. 2014; Striem-Amit et al. 2017) and none had history of phantom limb 
sensations or movements (tested as in Vannuscorps and Caramazza 2016). Two TDs were 
excluded from the sample due to poor behavioral performance (error rate exceeding the group 
mean by > 2 SDs) in the experimental task. All participants gave written informed consent 
prior to the study, which was approved by the Committee on the Use of Human Subjects, 
Harvard University.   

Experimental Design 

The stimuli were 64 video-clips of interest and 48 video clips used as “catch trials”. The 64 
video-clips of interest were 32 exemplars of “opening” and 32 exemplars of “closing” actions 
performed with the right hand or foot with four different exemplars of two different object 
types (doors and trash bins) by two different actors (see Figure 1). Representative exemplars 
of the video-clips can be visualized on http://www.testable.org/experiment/7/199225/start. 
Briefly, the actions looked as follows: the actor stood next to a door partly (about 10 cm) or 
largely (about 90 cm) opened with his/her hand or his/her foot positioned on the edge of the 
door or stood next to an opened or closed trash bin with his/her hand positioned on the edge 
of the trash bin’s lid or his/her foot positioned on the trash bin’s pedal and then either opened 
or closed the door or the trash bin entirely. These stimuli satisfied three requirements. First, 
they corresponded to actions regularly executed by typically developed participants with the 
foot or the hand. Second, the two objects required very different kinematics (e.g., 
pushing/pulling vertically vs. horizontally). We thereby guaranteed that across object MVP 
decoding (training on one object and testing on the other) relied on abstract action 
representations that generalize across perceptual information (Wurm and Lingnau 2015; 
Wurm et al. 2016). Perceptual variance was further ensured by the use of different actors and 
exemplars of the two objects shown from a left or right viewpoint. Third, the upper limb 
actions corresponded to a movement impossible to execute with the lower limbs. The feet, for 
instance, allow neither grasping a bin lid with a precision grip opposing the fingertips nor 
grasping a door panel with a palm power grip. Thus, these actions were possible to execute 
by the IDs, but with different movement parameters. The 48 video clips used as “catch trials” 
were similar video-clips in which the action was incomplete, i.e., the door or trash bin was 
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touched by the hand or foot but kept open or closed, respectively. During the experiment, 
these stimuli were back-projected onto a screen via a liquid crystal projector and viewed 
through a mirror mounted on the head coil. All videos were in grayscale, had a duration of 2 s 
and had a resolution of 768 x 576 pixels.  

Each participant was scanned in a single session consisting in one anatomical scan followed 
by 4 functional scans (runs) during which they viewed pictures of tools, non-manipulable 
objects, hands and feet (these data are presented in Striem-Amit, Vannuscorps & Caramazza, 
2017) and then 6 other functional scans (runs) constituting the experiment reported herein. 
Each run started with a 10-s fixation period, ended with a 16-s fixation period, and was 
constituted of 80 events lasting 2 seconds and followed by a 1s fixation period. These 80 
events always comprised the 64 video-clips of interest (2 actions x 2 actors x 2 effectors x 2 
objects x 4 exemplars), 8 catch trials and 8 null events, mixed in a different, first-order 
counterbalanced (Aguirre 2007), order in each run. Hence, there was a total of 8 trials for 
each combination of action, effector and object in each run, for a total of 48 trials in the 
whole experiment. Participants were instructed to attentively watch the movies and respond 
(by foot response) to the catch trials in which the action was incomplete, i.e., the door or trash 
bin was touched by the hand or foot but kept open or closed, respectively. The data from 
these trials were excluded from further analysis. Stimulus presentation, response collection, 
and synchronization with the scanner were controlled with Presentation® software 
(Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 

 

 
Figure 1. (A) Upper limb extremities of the individuals with upper limb dysplasia (IDs) included in 
the study. (B) Action decoding scheme and examples of the experimental conditions. In the across 
object decoding, a classifier was trained to discriminate between opening vs. closing trash bins and 
tested on opening vs. closing doors, and vice versa (for each effector separately). The decoding thus 
targeted action representations that generalize across the objects involved in the actions and the 
specific effector movements required for the actions.  

 

 

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/305888doi: bioRxiv preprint first posted online Apr. 22, 2018; 

http://dx.doi.org/10.1101/305888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

5 

Data acquisition 

Functional and structural data were collected using a Siemens Tim Trio 3-T scanner at the 
Center for Brain Science at Harvard University and a 16-channel birdcage head coil. 
Functional images were acquired with a T2*-weighted gradient echo-planar imaging (GE-
EPI) sequence that employed multiband RF pulses and Simultaneous Multi-Slice (SMS) 
acquisition (Moeller et al. 2010; Setsompop et al. 2012) with fat suppression. The SMS-EPI 
acquisitions used a modified version of the Siemens WIP 770A. Acquisition parameters were 
a repetition time of 2 s, an echo time of 28 ms, a flip angle of 80°, a field of view of 216 mm, 
and a matrix size of 108 x 108. We used 69 slices, acquired in ascending interleaved order, 
with a thickness of 2 mm and no gap. Slices were tilted to run parallel to the superior 
temporal sulcus. In each functional run, 180 images were acquired.  

Structural T1-weigthed images were acquired with an MPRAGE sequence (176 sagittal 
slices, TR = 2530 s, inversion time = 1200 ms, FA = 7°, 256 x 256 mm FOV, 1 x 1 x 1 mm 
resolution). 

Preprocessing 

Data were analyzed using SPM8, BrainVoyager QX 2.8 (BrainInnovation) in combination 
with the NeuroElf Toolbox, and custom software written in Matlab (MathWorks). The first 4 
volumes were removed to avoid T1 saturation. The first volume of the first run was aligned to 
the high-resolution anatomy (6 parameters). Data were 3D motion corrected (trilinear 
interpolation, with the first volume of the first run of each participant as reference), followed 
by slice time correction, high-pass filtering (cutoff frequency of 3 cycles per run), and iso-
voxel transformation to 3 x 3 x 3 mm resolution. Spatial smoothing was applied with a 
Gaussian kernel of 8 mm FWHM for univariate analysis and 3 mm FWHM for MVPA 
(Wurm and Lingnau 2015; Gardumi et al. 2016). Anatomical and functional data were 
transformed into MNI space using trilinear interpolation.  

Statistical Analysis  
Multivoxel pattern analysis (MVPA) 

MVPA was carried out using linear discriminant analysis (LDA) classification as 
implemented in the CoSMoMVPA toolbox (Oosterhof et al. 2016). Design matrices 
contained 16 predictors reflecting the action conditions (8 actions x 2 exemplars), 2 catch 
trials predictors, and 6 predictors resulting from 3D motion correction. Each predictor was 
convolved with a dual-gamma hemodynamic impulse response function (Friston et al. 1998). 
Each trial was modeled as an epoch lasting from video onset to offset (2 s). The resulting 
reference time courses were used to fit the signal time courses of each voxel. Beta weights of 
experimental conditions were estimated on the basis of 4 trials per condition and run resulting 
in two beta estimates per action condition and run. The 4 trials were selected from either the 
first half or the second half of each run. Because the 4 trials showed different instantiations of 
the same action (different viewpoints, actors, and object exemplars), the MVPA targeted 
action representations that generalize across these factors (Wurm et al. 2017). In total, this 
procedure resulted in 12 beta maps per action condition (6 runs x 2 exemplars). Searchlight-
based MVPA (Kriegeskorte et al. 2006) was performed in volume space using spherical ROIs 
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with a radius of 12 mm (Wurm and Lingnau 2015).  

The following steps were done for each participant and searchlight ROI separately. Within 
each individual ROI (221 voxels on average), beta weights were extracted resulting in 12 beta 
patterns per condition. Beta patterns were then entered into MVPA. The “across object” 
decoding targeted action representations that generalize across object categories and thus are 
independent of the visual features of the stimuli. Using a leave-one-run-out cross validation 
scheme, a classifier was trained to discriminate between the beta patterns of opening and 
closing a door with the one effector (i.e., the hand or the foot) and tested on the beta patterns 
of opening and closing a trash bin with the same effector. The same classification procedure 
was done vice versa, i.e., the classifier was trained on opening and closing a trash bin and 
tested on opening and closing a door, and the decoding accuracies were averaged across the 
two generalization directions and across the 6 iterations of the cross-validation. MVPA thus 
resulted in one mean decoding accuracy value per effector, ROI, and subject. The “across 
effector” decoding targeted action representations that generalize across the effector that is 
used for the action. In this decoding scheme, a classifier was trained to discriminate between 
opening vs. closing trash bins with the hand and tested on opening vs. closing trash bins with 
the foot, and vice versa (Figure S1A). The same was done for actions involving doors; 
resulting accuracies were averaged across object types. The “across object and effector” 
decoding, targeted action representations that generalize across both the object involved in 
the action and across the effector that is used for the action. To this end a classifier was 
trained to discriminate between opening vs. closing trash bins with the hand and tested on 
opening vs. closing doors with the foot, and vice versa (Figure S1A). The same was done for 
the other possible combination (train on opening vs. closing trash bins with the foot and 
tested on opening vs. closing doors with the hand, opening vs. closing trash bins with the 
hand), and resulting accuracies were averaged. In all decoding analyses mean accuracy values 
were assigned to the center voxel of each searchlight sphere.  

Additionally, we computed 100 chance accuracy (null) maps for each decoding analysis. 
Each null map was computed in the same manner as reported above, except that the target 
labels were randomized before decoding to generate classification measure outcomes under 
the null hypothesis. Labels were randomized under the constraint that the number of samples 
in training and testing datasets was balanced between the two classes to avoid biases due to 
uneven class distributions in the training and testing datasets (Nichols and Holmes 2002; 
Oosterhof et al. 2016). Null maps were entered into permutation tests at the group level (see 
below) by randomly selecting one null map per subject for subsequent group analysis 
(Nichols and Holmes 2002; Stelzer et al. 2013).  

ROI MVPA 

AON ROIs (12 mm radius) were defined based on coordinates from the meta-analysis for 
action observation of Caspers et al. (2010) [MNI coordinates; PMv: -50/9/30 (left), 52/12/36 
(right); IPL: -60/-24/36 (left), 44/-34/44 (right); and LOTC: -46/-72/2 (left), 52/-64/0 (right)]. 
This subject-independent ROI definition was chosen to avoid group-specific ROI selection 
biases. Decoding accuracies were extracted from searchlight maps. For stability and 
normality, we averaged the decoding accuracies across voxels of a ROI (Fairhall and 
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Caramazza 2013). For each test and ROI, we first tested whether the mean decoding 
accuracies of the TDs and the IDs was significantly higher than the classification expected by 
chance (50%). To this end we estimated the null distribution of mean decoding accuracy for 
each subject group, test, and ROI from resampled null maps. Resampling of each subject 
group was done by randomly selecting one of the 100 null maps per subject to obtain a 
unique combination of null maps (10000 iterations). For each iteration, ROI, test, and subject 
group, decoding accuracies were extracted from the resampled maps, averaged across voxels, 
and the mean decoding accuracy of the group was computed. We then estimated the 
probability that the observed true mean accuracy can occur by chance by counting the 
number of mean accuracies of the null distribution that are equal or greater than the true mean 
accuracy and divided that number by the number of all mean accuracies of the null 
distribution (10000). The resulting p values of each subject group were FDR-corrected 
(Benjamini and Yekutieli 2001) by the number of ROIs and tests (24 tests in total). 
Additional analyses that tested for deviant hand action decoding in the IDs were carried out 
only in those ROIs that showed significant above chance accuracies in the TDs or in the IDs 
(see Supplemental Material).  

Whole-brain MVPA 

For whole-brain analysis, individual accuracy maps of the hand and foot action decoding 
were entered into a one-sample t-test for each subject group to identify voxels yielding 
classification significantly above chance. Statistical maps were corrected for multiple 
comparisons using a cluster-based Monte Carlo simulation algorithm as implemented in the 
CoSMoMVPA Toolbox (Oosterhof et al. 2016). We used a threshold of p = 0.05 at the 
cluster level, and initial voxelwise threshold of p = 0.001, and 10000 iterations of Monte 
Carlo simulations. For visualization, maps were projected on a cortex surface of a Colin27 
MRI volume as provided by the Neuroelf toolbox using BrainVoyager QX 2.8 
(BrainInnovation). In a second-level analysis, we computed the interaction GROUP (TDs, 
IDs) x EFFECTOR (hand, foot) as reported above (ROI MVPA). This allowed us to identify 
voxels that are in favor of the specific hypothesis that the IDs show weaker decoding for hand 
vs. foot actions (indicated by positive t values; note however that positive t values may also 
indicate weaker decoding of foot vs. hand actions in the TDs). The maps were thresholded 
using a bootstrapping procedure (Nichols and Holmes 2002) using a cut-off at p = 0.05 to 
isolate voxels in which the observed t value based on the true assignment into TDs and IDs is 
higher than 95% of t values based on random assignments into TDs and IDs. To this end we 
computed 10000 unique random group assignments permutations not identical to the true 
group assignment by shuffling the group labels (TDs, IDs). For each random assignment we 
computed a new t map. Then we computed, for each voxel, the upper bound of the 95% 
confidence interval (one-sided, z = 1.6449) of the bootstrapping distribution and tested 
whether the t value of the true group assignment exceeds this cut-off. The resulting map was 
further thresholded at t(10) = 3.15 (p = 0.01) and a cluster size of 3 voxels.  

Whole-brain decoding map similarity 

To provide positive evidence that IDs represent hand actions like the TDs, we employed a 
multivariate similarity analysis. We reasoned that if the IDs represent hand actions in similar 
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brain regions, and thus voxels, as the TDs, then the decoding maps of the IDs and the TDs 
should significantly correlate with each other. To this end, we compared the correlation of 
decoding maps within the TD with the correlation of decoding maps between TDs and IDs.  

We first computed the mean accuracy map correlation within the TDs. To this end, the TDs 
were split into two groups of 3 and 4 subjects, respectively, using all permutations of possible 
subject combinations. For each permutation and subject group, mean accuracy maps were 
computed. Maps were then vectorized and correlated with each other using Pearson 
correlation. Resulting correlation coefficients were averaged across permutations.  

To test whether there was a significant correlation within the TDs, we tested the within-TD 
correlation against the null distribution of correlation coefficients based on random 
permutation maps. Random permutation maps were generated for each participant by 
permuting the decoding targets (opening vs. closing) to generate decoding accuracies under 
the null hypothesis. For each participant, a set of 100 randomized maps was generated. Using 
a bootstrapping approach as described in Stelzer et al. (2013), individual maps were 
randomly selected from the set and combined to 10000 different group pools. For each pool, 
a within-TD mean correlation coefficient was computed as described above. The true 
correlation coefficient was then tested against the 95% confidence interval (CI) of the null 
distribution. 

In a similar manner, between-group mean accuracy map correlations were computed. To this 
end, permutations of all possible subsets of 3 and 4 TDs, respectively, were computed.  
Likewise, permutations of all possible subsets of 3 and 4 IDs, respectively, were computed. 
For each subset, maps were averaged and vectorized. TD and ID subsets were then correlated 
with each other, so that subsets were always based on 3 TD and 4 ID maps or 4 TD and 3 ID 
maps. Resulting correlation coefficients were averaged across permutations. As described 
above, a null distribution of between-group correlations was computed, and the mean 
between-group correlation coefficient was tested against the 95% confidence interval (CI) of 
the null distribution.  

Univariate fMRI analysis.  

For each participant, a general linear model (GLM) was computed using design matrices 
containing predictors of the 8 action conditions, catch trials, and of the 6 parameters resulting 
from 3D motion correction (x, y, z translation and rotation). For each participant, the 
contrasts hand actions vs. baseline and foot actions vs. baseline were computed. For ROI 
analysis, beta estimates were extracted from spherical ROIs with 12 mm radius for each 
contrast map and participant. AON ROIs were defined as in the MVPA reported above. Beta 
values were averaged across ROI voxels and entered into one-tailed one sample tests. ROIs 
that showed significant activations in at least the TDs or IDs alone (as indicated by FDR 
corrected significant beta coefficients) were further analyzed in subsequent second level 
analyses (see Supplemental Material).  
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Results 
We recorded functional magnetic resonance imaging (fMRI) data from typically developed 
participants (TDs) and five individuals born with no elbow, wrist, or hands (IDs, see Figure 
1A) when watching video-clips of typical actions executed with the lower and upper limbs, 
with different objects, actors and viewing angles (Figure 1B). All participants accomplished 
the task with high accuracy. IDs made less errors (0.8 ± 0.3%) than the TDs (1.8 ± 0.4%), but 
the difference was not significant.  

Decoding of hand and foot actions in the AON  

To test whether the IDs show the typical large-scale organization and functional properties of 
the brain areas specialized for observed human actions, we first conducted multivoxel pattern 
analyses of the fMRI data in the three brain regions of the AON (12 mm spherical regions of 
interest; ROIs) defined based on a meta-analysis on action observation (Caspers et al. 2010). 
For each ROI, participant, and effector shown in the video (hand and foot) we trained a linear 
discriminant analysis (LDA) classifier to discriminate between two actions (opening and 
closing) performed with one object (e.g., a door) and tested the ability of the classifier to 
discriminate the two actions performed with another object (e.g., a trash bin, see Figure 1B). 
Critically, this conservative generalization scheme made sure that the MVPA relied on 
higher-level representations of the actions instead of the mere visual features of the stimuli. 
We tested hand action decoding in the IDs using permutation testing, i.e., through estimating 
the probability of observed mean decoding accuracies relative to the null distribution of mean 
decoding accuracies generated from resampled random decoding data (see Methods for 
details).   

The results of these analyses, shown in Figure 2, indicated significant above chance decoding 
accuracies for hand actions not only in the TDs’ bilateral LOTC and left IPL ROIs, but also 
in the IDs’ bilateral IPL and right LOTC ROIs (FDR corrected one-sided permutation tests, 
all ps < 0.008). This indicated that the large-scale functional organization of action 
representation in the areas of the AON does not require effector- specific visuomotor 
coupling. To further explore the data, we searched for possible differences between the hand 
action decoding in the IDs and in the TDs, and between the hand and foot action decoding in 
the IDs using traditional and Bayesian mixed ANOVAs and two-sample t tests. The results of 
these comparisons (see supplemental results and tables S1 and S2) failed to reveal any 
significant differences and, if anything, suggested that the decoding of hand and foot action 
were more likely similar than different between the groups.   

Whole-brain decoding of hand and foot actions  

The findings of the ROI analysis were corroborated by those of a whole brain action 
decoding analysis. As shown in Figure 3A, hand action decoding was strongest in LOTC and 
IPL for both IDs and TDs, again suggesting that the IDs decode hand actions through the 
typical AON. Furthermore, additional ANOVAs analyses performed to explore possible 
differences between the decoding of hand and foot action in the two groups in brain areas 
showing significant hand decoding by at least one of the two groups (Figure 3B; see details in 
supplemental results section) revealed only a small cluster in the left LOTC showing an  
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Figure 2. Hand and foot action decoding accuracy in the action observation network (AON). Blue and 
red bars represent mean decoding accuracies (50% = chance) of TDs and IDs, respectively. 
Superimposed colored dots indicate individual decoding accuracies. Asterisks above bars indicate 
significance (red: FDR corrected for the number of tests = 24; black: < 0.05 uncorrected).  Both IDs 
and TDs showed significant hand action decoding in LOTC and IPL regions. 

 

interaction pattern compatible with a sensorimotor developmental effect (selectively weaker 
hand action decoding in IDs; at a lenient threshold of p = 0.01). The rest of the AON did not 
show such interaction. 

Similarity of hand action decoding patterns 

Since we found evidence for hand action decoding in the IDs and failed to find any 
substantial differences between the IDs and TDs, we performed additional ad hoc analyses to 
explore in more detail whether the networks subserving hand action representation are 
significantly similar in the IDs and TDs. To this end, we correlated the accuracy maps of the 
hand action decoding within the TDs and, then, between the TDs and the IDs. We reasoned 
that if the correlation between the two groups is (1) significantly above chance and (2) as 
strong as the within-TD correlation, then this would demonstrate that the action decoding 
patterns are similar in IDs and TDs. In a first step, we computed the mean within-TD 
correlation and compared it to the null distribution of correlations of random permutation 
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maps of the TDs. The within-TD correlation was significant (above the 95% confidence 
interval of the within-TD random permutation correlations, p = 0.022), which suggests that 
the hand action decoding maps of the TDs contain significant information and are similar to 
each other (Figure 4A). Crucially, the between-group correlation was also significant (p = 
0.006) and as strong (or stronger) as the within-TD correlation (Figure 4A).  

The result from these additional analyses thus provides positive evidence that the 
hand action decoding patterns of the IDs show significant similarity to the action decoding 
pattern of the TDs. To visualize the similarities of the individual action decoding patterns of 
IDs and TDs we correlated all subjects with each other (Figure 4B) and carried out a 
hierarchical cluster analysis. A hierarchical cluster analysis as well as a multidimensional 
scaling demonstrated that IDs and TDs did not form segregated clusters but were 
intermingled with each other (Figure 4C and 4D), again showing that the IDs action decoding 
maps are within the typical distribution. 

 

 
Figure 3. Across object decoding searchlight analyses. (A) Mean accuracy maps of hand and foot 
action decoding for the TDs and IDs show similar networks involved in hand action decoding in both 
populations. (B) GROUP x EFFECTOR interaction map corrected using a group label bootstrapping 
procedure (see Methods for details). Yellow outlined areas indicate significant clusters of hand action 
decoding of the TDs (corresponding to the TD mean accuracy maps in the upper left of panel A), 
corrected for multiple comparisons (voxel threshold p = 0.001, cluster threshold p = 0.05). The 
interaction analysis shows few small clusters, only one of which (in the posterior left LOTC) in an 
area where decoding is significantly different from chance in the TDs. The mean decoding accuracies 
for each effector of the significant clusters are plotted to indicate the directions of the interactions (H 
= hand, F = foot).  

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/305888doi: bioRxiv preprint first posted online Apr. 22, 2018; 

http://dx.doi.org/10.1101/305888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

12 

 
Figure 4. Pattern similarity of the across-object hand action decoding. (A) Mean within-TD 
correlation (blue line) and mean between group correlation (red line) superimposed on the distribution 
of within-TD random permutation correlations and its the 95% confidence interval (green line) show 
both within and between-group correlations are significant. (B) Correlation matrix of all participants’ 
decoding maps. (C, D) Hierarchical cluster analysis of the dissimilarities between the subjects’ maps 
(1 – r) visualized as dendrogram (C), and multidimensional scaling (D), both show the IDs maps fall 
within the variability of the TDs. Blue and red dots indicate TDs and IDs, respectively. 

 

Across effector decoding 

These findings invite the speculation that the LOTC and IPL could house action 
representations that are largely independent of the effector that is used to carry out the action 
(i.e., independent of whether an action is carried out with the hand or the foot). If so, these 
representations should generalize not only across the objects involved in the actions but also 
across the effector used for the actions. To test this possibility, we trained a classifier to 
discriminate between opening and closing an object with one effector (e.g., the foot) and 
tested the classifier to discriminate the two actions carried out with the other effector (e.g., 
the hand). We identified action representations that generalize across effectors as well as 
representations that generalize across both effectors and objects in the LOTC and IPL of both 
TDs and IDs (Figures S1 and S2). Moreover, exploratory group comparisons suggested that 
the patterns of these representations were more likely similar than different in TDs and IDs 
suggesting that also effector-invariant action representations are not substantially modulated 
by sensorimotor experience (Figures S1-S3; Table S3). Therefore, parts of the AON, 
including LOTC and IPL, may represent abstract action representations, beyond the used 
effector. 

Univariate analyses  

Finally, we tested whether the IDs show deviant neural activations during the observation of 
hand actions. We thereby targeted representations that are not necessarily action-specific 
and/or feature-general, e.g. representations at processing stages that may precede the 
activation of high-level action representations. We found significant univariate activation in 
the IDs in the AON (Figure S4). In addition, traditional and Bayesian mixed ANOVAs and 
two-sample t tests performed to explore possible differences between the representation of 
hand and foot actions in the two groups suggested that the representation of hand and foot 
action are more likely similar than different between the groups (see supplemental results and 
supplemental tables S4 and S5).  Finally, we found no evidence for hand action selective 
increase of activation in any other area of the brain (even at a liberal threshold) that could 
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suggest the use of an alternative action processing mechanism. These results suggest a typical 
distribution of brain activation during the observation of hand actions in the IDs.  

 

Discussion 
We used fMRI to study the processing of observed hand and foot actions in individuals born 
without upper limbs and, thereby, determine whether the typical large-scale organization of 
the AON is genetically determined or emerges through repeated effector-specific functional 
coupling within the bidirectionally connected functional circuit translating observed actions 
into the corresponding motor codes, and vice versa (the AON). Using a combination of 
univariate analyses, multivoxel pattern decoding, and pattern similarity analyses, we found 
the typical spatial arrangement and functional properties of brain areas specialized in the 
processing of observed actions for hand and foot actions both in participants born without 
upper limbs and in typically developed individuals. We additionally found no evidence for 
large group difference in the AON. This clear spatial and functional preservation for hand 
actions in the IDs, despite an absence of hand movement execution, demonstrates that 
effector-specific visuomotor coupling is not necessary for the areas belonging to the action 
observation network to specialize for observed human actions. Together with previous 
findings that specialization for hands and tools is also independent from sensorimotor 
experience (Striem-Amit et al. 2017), but not for letters (Baker et al. 2007; Dehaene et al. 
2010; Saygin et al. 2016), our finding thus adds new evidence in support of a conception of 
brain organization that differentially attributes a primary role to genetic factors in the 
emergence of brain specialization for stimuli of evolutionary relevance (Caramazza and 
Shelton 1998), such as body parts, tools and human actions, and to post-natal experience for 
stimuli with less evolutionary relevance or that were acquired later during human evolution 
(such as letters and numbers).  

This theoretical perspective does not imply that experience does not influence the content or 
fine-grained organization of the regions coding for evolutionarily relevant categories. 
Evidence that extensive training and experience can change the fine-grained response profile 
of the AON is compelling (Turella et al. 2013). Dancers, for instance, activate some parts of 
the AON more when they observe dance movements that they are used to perform than those 
they are less used to perform (Calvo-Merino et al. 2006). In the same vein, we also found a 
small cluster in the posterior dorsal left LOTC that showed selectively weaker hand action 
decoding in the IDs than in the TDs. Thus, the claim here is not that there are no subtle 
differences between groups or between the processing of hand and feet actions in the IDs. 
Our results suggest, however, that experience-dependent structural plasticity is highly 
constrained by genetically determined organization principles.  

As such our findings corroborate those reported by two previous studies reporting on the 
brain correlates of action observation in individuals born without upper limbs. The first study 
reported on the brain correlates of observing actions (e.g., writing or crushing) that were 
possible or impossible to execute for a participant, DD, born without forearms and lower 
limbs (Aziz-Zadeh et al. 2012). The second study scanned two dysplasic subjects, born 
without arms or hands, while they watched hand actions (Gazzola et al. 2007). In both 
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studies, the IDs’ AON was activated when they watched actions that they could not perform. 
Nevertheless, these observations were somewhat limited because the sole use of univariate 
analyses did not allow probing the representational content of the AON nodes in the IDs.  

Beyond contributing to theories of the emergence of brain specialization, our findings are 
also relevant for theories about the brain substrate of action perception and interpretation. 
First, they extend previous studies by showing that the LOTC and IPL contain information 
about the content of an observed action that generalizes not only across viewpoint, 
kinematics, and the object involved in the action (Oosterhof et al. 2012; Wurm and Lingnau 
2015; Wurm et al. 2016), but also across effectors regardless of sensorimotor experience. 
Second, our findings are also relevant for the question of the role of motor simulation in 
action recognition. According to motor simulation theories of action recognition, the 
recognition of others’ actions cannot be achieved by visual analysis of the movements alone 
but requires unconscious covert imitation – motor simulation – of the observed movements 
(Blakemore and Decety 2001; Rizzolatti and Sinigaglia 2010). At odds with this hypothesis, 
previous behavioral studies showed that the IDs perceive and comprehend hand actions, 
which they cannot covertly imitate, as accurately, as fast, and with the same biases as 
typically developed participants (Vannuscorps et al. 2013; Vannuscorps and Caramazza 
2016, 2017). However, the possibility remained that the IDs use alternative, compensatory 
strategies or brain mechanisms to reach efficiency. The present findings suggest that this is 
not the case and, together with the previous behavioral findings, constitute clear evidence that 
efficient action recognition can be supported by the visual-cognitive brain structures unaided 
by the motor system.    

In conclusion, the clear preservation of functional organization of the AON in people born 
without hands observing hand actions suggests that sensorimotor ontogenetic experience is 
not required for this specialization to emerge. Instead, it points to an evolutionarily driven 
functional selectivity, which can develop based on inherited connectivity constraints.  
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